Tag Archives: bucket cylinder excavator

China supplier for Hyundai, Excavator Hydraulic Arm Boom Bucket Cylinder R130-7 R150-9 R200-5/R210-5 R215-7 R215vs/R225vs R220-7/R225-7 vacuum pump diy

Product Description

For CHINAMFG ,Excavator Hydraulic Arm Boom Bucket Cylinder R130-7 R150-9 R200-5/R210-5 R215-7 R215vs/R225vs R220-7/R225-7  
PRODUCT  SPECIFICATION
 

R130-7 boom cylinder rod 75mm boom cylinder tube 105mm
R130-7 arm  cylinder rod 80mm arm cylinder tube 115mm
R130-7 bucket cylinder  70mm bucket cylinder tube  
R150-9 boom cylinder rod   boom cylinder tube  
R150-9 arm cylinder rod 80mm arm cylinder tube 115mm
R150-9  bucket cylinder    bucket cylinder tube  
R200-5/R210-5 boom cylinder rod 85mm boom cylinder tube 125mm
R200-5/R210-5 arm cylinder rod 95mm arm cylinder tube 140mm
R200-5/R210-5 bucket cylinder rod 80mm bucket cylinder tube 120mm
R215-7 boom cylinder rod 85mm boom cylinder tube 125mm
R215-7 arm cylinder rod 95mm arm cylinder tube 140mm
R215-7 bucket cylinder rod 80mm bucket cylinder tube 120mm
R215VS/225VS boom cylinder rod 85mm boom cylinder tube 120mm
R215VS/225VS arm cylinder rod 100mm arm cylinder tube 140mm
R215VS/225VS bucket cylinder rod 85mm bucket cylinder tube 125mm
R220-7/225-7 boom cylinder rod 85mm boom cylinder tube 120mm
R220-7/225-7 arm cylinder rod 100mm arm cylinder tube 140mm
R220-7/225-7 bucket cylinder rod 85mm bucket cylinder tube 125mm

Part number system
PRODUCT DISPLAY

COMPANY INFORMATION

PRODUCTION PROCESS

OTHER PRODUCTS
FAQ

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Samples:
US$ 599/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

single acting hydraulic cylinder

Can single-acting hydraulic cylinders be employed in material handling equipment?

Yes, single-acting hydraulic cylinders can be employed in material handling equipment. Here’s a detailed explanation:

Material handling equipment is widely used in various industries, including manufacturing, logistics, construction, and warehousing, to efficiently move, lift, and transport materials and goods. Single-acting hydraulic cylinders play a crucial role in the operation of many types of material handling equipment.

These cylinders are commonly found in equipment such as forklifts, pallet jacks, scissor lifts, lifting tables, and conveyor systems. They enable controlled lifting, lowering, tilting, and pushing/pulling actions, allowing for precise material handling and positioning.

Single-acting hydraulic cylinders offer several advantages in material handling applications:

1. Lifting Capacity: These cylinders can generate substantial force, enabling the equipment to lift heavy loads. The lifting capacity can be designed to meet the specific requirements of the material handling equipment.

2. Controlled and Smooth Operation: Single-acting hydraulic cylinders provide precise control over the movement of materials. The hydraulic system allows for smooth and gradual lifting, lowering, and tilting actions, ensuring safe and efficient material handling.

3. Compact Design: Single-acting hydraulic cylinders have a compact design, making them suitable for integration into various material handling equipment. The cylinders can be installed in tight spaces without compromising performance or functionality.

4. Cost-Effective: Single-acting hydraulic cylinders are generally more cost-effective compared to other types of hydraulic cylinders. Their simpler design and reduced complexity contribute to lower manufacturing and maintenance costs.

5. Durability and Reliability: Material handling equipment often operates in demanding environments, subject to heavy loads, impacts, and repetitive cycles. Single-acting hydraulic cylinders are designed to withstand these harsh conditions, offering durability and long-term reliability.

6. Safety Features: Many material handling equipment applications require safety features, such as load-holding valves and emergency lowering systems. These safety features can be integrated into the hydraulic system of single-acting cylinders to ensure safe operation and protect against accidents.

It is important to note that while single-acting hydraulic cylinders are commonly used in material handling equipment, the specific cylinder type and configuration may vary depending on the equipment’s design and requirements. Other types of hydraulic cylinders, such as double-acting cylinders or telescopic cylinders, may also be employed in certain material handling applications.

In summary, single-acting hydraulic cylinders are indeed employed in material handling equipment. Their lifting capacity, controlled operation, compact design, cost-effectiveness, durability, and safety features make them well-suited for various material handling applications across different industries.

single acting hydraulic cylinder

Can single-acting hydraulic cylinders be employed in hydraulic winches for specific tasks?

Yes, single-acting hydraulic cylinders can be employed in hydraulic winches for specific tasks. Here’s a detailed explanation:

Hydraulic winches are widely used in various industries for tasks that require controlled pulling or lifting operations. Single-acting hydraulic cylinders can play a crucial role in the operation of hydraulic winches, offering several advantages in specific applications. Here are the key points regarding the use of single-acting hydraulic cylinders in hydraulic winches:

1. Pulling and Lifting Force: Hydraulic winches are designed to generate pulling or lifting force to move or lift heavy loads. Single-acting hydraulic cylinders can provide the required force for these tasks. By applying hydraulic pressure to the cylinder, the piston extends, exerting force on the winch drum or cable. This force allows the winch to pull or lift the load effectively. The force generated by the single-acting hydraulic cylinder can be precisely controlled and adjusted, ensuring efficient and reliable operation.

2. Single Directional Force: Single-acting hydraulic cylinders generate force in a single direction, typically during extension. In the context of hydraulic winches, this means that the cylinder can pull or lift loads in one direction. This feature is advantageous for tasks that require controlled and unidirectional movement, such as towing, hoisting, or positioning operations. The single-acting hydraulic cylinder provides the necessary force for pulling or lifting, while other components of the winch, such as brakes or clutches, control the load’s descent or maintain tension.

3. Compact Design: Single-acting hydraulic cylinders have a relatively compact design, making them suitable for integration into hydraulic winches. The compact size allows for efficient installation and utilization of space, ideal for winch applications with limited mounting or operational space.

4. Customization Options: Single-acting hydraulic cylinders can be customized to meet specific requirements of hydraulic winches. The cylinder’s stroke length, bore size, and mounting configurations can be tailored to suit the winch’s design and intended tasks. Customization options ensure optimal performance and compatibility with the winch system, enhancing its efficiency and effectiveness.

5. Safety Considerations: Hydraulic winches often involve heavy loads and potentially hazardous operating conditions. Single-acting hydraulic cylinders can incorporate safety features such as pressure relief valves or overload protection mechanisms. These safety measures help prevent excessive force application, equipment damage, or system failures, ensuring the safety of personnel and the integrity of the winching operations.

Hydraulic winches employing single-acting hydraulic cylinders are utilized in various industries, including marine, construction, forestry, and off-road applications. They are employed for tasks such as vehicle recovery, material handling, load positioning, and other pulling or lifting operations.

In summary, single-acting hydraulic cylinders can be effectively employed in hydraulic winches for specific tasks. Their ability to provide controlled pulling or lifting force, compact design, customization options, and safety considerations make them valuable components in hydraulic winch systems.

single acting hydraulic cylinder

What are the advantages of using single-acting hydraulic cylinders in hydraulic systems?

Using single-acting hydraulic cylinders in hydraulic systems offers several advantages. Here’s a detailed explanation:

1. Simplicity and Cost-Effectiveness: Single-acting hydraulic cylinders have a simple design, consisting of a piston, cylinder, and hydraulic fluid. This simplicity makes them cost-effective to manufacture, purchase, and maintain compared to more complex hydraulic cylinders. Their straightforward construction also facilitates easier installation and troubleshooting.

2. Unidirectional Force: Single-acting hydraulic cylinders generate force in one direction, typically extending the piston. This unidirectional force output is advantageous in applications where force is required in one direction only, such as lifting, pushing, or pressing tasks. The absence of a return stroke simplifies the hydraulic circuit and reduces complexity.

3. Efficient Power Transfer: Single-acting hydraulic cylinders offer efficient power transfer from the hydraulic fluid to the load. When hydraulic pressure is applied to the cylinder’s pressure chamber, it generates a linear force that moves the piston. This force is transmitted directly to the load, resulting in efficient power transmission without energy loss.

4. Compact and Lightweight: Single-acting hydraulic cylinders are generally compact and lightweight, making them suitable for applications with space or weight restrictions. Their compact size allows for easier integration into hydraulic systems, while the reduced weight minimizes the overall system weight. This can be advantageous in mobile or portable hydraulic equipment.

5. Reduced Complexity: Compared to double-acting hydraulic cylinders that require hydraulic fluid flow in both directions, single-acting cylinders have simpler hydraulic circuitry. This reduced complexity can lead to easier system design, installation, and maintenance. Additionally, the absence of a return stroke simplifies the control and valve requirements in the hydraulic system.

6. Lower Initial Cost: Single-acting hydraulic cylinders typically have a lower initial cost compared to double-acting cylinders. This cost advantage makes them an attractive choice for applications with budget constraints. However, it’s important to consider the specific requirements of the application and evaluate the overall cost-effectiveness, including factors such as performance, maintenance, and lifecycle costs.

7. Reliable and Durable: Single-acting hydraulic cylinders are known for their reliability and durability. With fewer moving parts and simpler construction, they are less prone to mechanical failures. This reliability ensures consistent performance and reduces downtime, resulting in increased productivity and operational efficiency.

8. Wide Range of Sizes and Capacities: Single-acting hydraulic cylinders are available in a wide range of sizes and capacities to suit various application requirements. Whether it’s a small-scale application or a heavy-duty industrial task, there are single-acting cylinders available to meet the specific force and stroke requirements.

In summary, the advantages of using single-acting hydraulic cylinders in hydraulic systems include simplicity and cost-effectiveness, unidirectional force output, efficient power transfer, compactness and lightweight design, reduced complexity, lower initial cost, reliability and durability, and a wide range of sizes and capacities. These advantages make single-acting hydraulic cylinders suitable for a variety of applications, offering effective and economical force generation in hydraulic systems.

China supplier for Hyundai, Excavator Hydraulic Arm Boom Bucket Cylinder R130-7 R150-9 R200-5/R210-5 R215-7 R215vs/R225vs R220-7/R225-7   vacuum pump diyChina supplier for Hyundai, Excavator Hydraulic Arm Boom Bucket Cylinder R130-7 R150-9 R200-5/R210-5 R215-7 R215vs/R225vs R220-7/R225-7   vacuum pump diy
editor by Dream 2024-05-13

China OEM Hydraulic Cylinder Factory, Fr150 Fr210 Fr210-7 Fr220 Fr260 Fr330 Fr370 Excavator Arm Boom Bucket Hydraulic Oil Cylinder for Lo/Vol with Good quality

Product Description

For Lo/vol Excavator Arm Boom Bucket Hydraulic oil Cylinder ,Fr150 Fr210 Fr210-7 Fr220 Fr260 Fr330 Fr370PRODUCT SPECIFICATION

FR210  arm cylinder rod 95 FR210 arm cylinder tube 135
FR210-7 bucket cylinder rod 80 FR210-7 bucket cylinder tube 115
FR220 bucket cylinder rod 80 FR220 bucket cylinder tube 115
FR220 arm cylinder rod 95 FR220 arm cylinder tube 135
FR260 arm cylinder rod 100 FR260 arm cylinder tube 140
FR260 bucket cylinder rod 90 FR260 bucket cylinder tube 130

Part number system

PRODUCT DISPLAY

COMPANY INFORMAION

PRODUCTION PROCESS


OTHER PRODUCTS

FAQ
1.How can I be sure the part will fit my excavator ?
Give us correct model number /machine serial number /any numbers on the parts itself .Or measure the parts give us dimension or drawing.
2. What material do you use on hydraulic cylinder?
High frequency quenching No.40 manganese steel as rod material, so the cylinder rod has better bending resistance; No.25 manganese steel as tube material ,so the tube has better wear resistance; high-strength hardened steel as rod head and tube head ,so the cylinder head and rod head more durable; name-brand seal kits to reduce the hydraulic cylinder oil leakage rate.
3.How long can an order delivery?
For some often used models of excavator hydraulic cylinder , we have in stock, within 7 days . For any order less than 1 container takes about 2 weeks to finish; Order of 1-2 container takes 4 -6weeks; At busy manufacturing season, manufacturing time needs more which can confirm by discussion.
4.How to pay?
Order less than 3000USD, full payment at order, Order over USD3000 value ,50% deposited in to start, 50% balance paid to deliver. Inspection service accepted. For customized order, 70%payment as deposit ,30% balance paid to deliver
5.How to delivery?
If you have shipping agent ,we will cooperate with your agent to arrange shipment . If not , we have good relationships with shipping companies, express suppliers. For light goods ,by UPS/DHL/TNT(DAP terms) , For heavy goods ,by sea (FOB,CIF,CFR) /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Samples:
US$ 699/Piece
1 Piece(Min.Order)

|

Order Sample

Contact for details before order
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

single acting hydraulic cylinder

How does a single-acting hydraulic cylinder fit into various hydraulic system designs?

A single-acting hydraulic cylinder can be integrated into various hydraulic system designs, offering versatility and functionality. Here’s a detailed explanation:

Hydraulic systems are widely used in numerous industries for various applications, including heavy machinery, construction equipment, manufacturing processes, and automation systems. Single-acting hydraulic cylinders play a crucial role in these hydraulic systems, providing linear force and motion. Here are the key points on how single-acting hydraulic cylinders fit into various hydraulic system designs:

1. Force Generation: Single-acting hydraulic cylinders are designed to generate force in one direction, typically during extension. They convert the hydraulic pressure supplied by the hydraulic system into linear force, enabling the system to perform tasks such as lifting, pushing, pulling, or clamping. The force generated by the single-acting hydraulic cylinder can be precisely controlled and adjusted, making it suitable for a wide range of applications.

2. Actuation Mechanism: Single-acting hydraulic cylinders serve as actuation mechanisms in hydraulic systems. They convert hydraulic energy into mechanical energy, allowing the system to perform the desired tasks. By utilizing the hydraulic pressure to extend or retract the piston, the single-acting hydraulic cylinder enables the system to move or apply force to the targeted components or objects.

3. Compact Design: Single-acting hydraulic cylinders have a relatively compact design, making them adaptable to various hydraulic system layouts and configurations. Their compact size allows for flexible installation, enabling integration into space-limited environments or complex machinery. The compact design of single-acting hydraulic cylinders also enhances the efficiency and effectiveness of hydraulic system designs.

4. Integration with Valves and Control Systems: Single-acting hydraulic cylinders can be easily integrated with valves and control systems within hydraulic systems. Valves control the flow and direction of hydraulic fluid to the cylinder, enabling precise control over the cylinder’s movement and force application. Control systems, such as pressure regulators or proportional control valves, can be employed to adjust and fine-tune the hydraulic pressure supplied to the cylinder, ensuring accurate and controlled operation. The integration of single-acting hydraulic cylinders with valves and control systems allows for the customization and optimization of hydraulic system designs.

5. System Customization: Single-acting hydraulic cylinders offer customization options to fit various hydraulic system designs. The cylinder’s stroke length, bore size, mounting configurations, and accessories can be tailored to meet specific requirements. This customization ensures compatibility with the overall hydraulic system design and optimizes the performance of the system in terms of force output, speed, and precision.

6. Safety Considerations: Single-acting hydraulic cylinders can incorporate safety features such as pressure relief valves, burst discs, or emergency stop mechanisms. These safety measures help prevent excessive force application, system overpressure, or equipment damage, providing a higher level of safety in hydraulic system designs.

Single-acting hydraulic cylinders are employed in a wide range of hydraulic system designs, including hydraulic presses, lifting equipment, material handling systems, construction machinery, agricultural machinery, and more. Their adaptability, force generation capabilities, compact design, integration with valves and control systems, customization options, and safety features make them valuable components in hydraulic system designs across various industries.

single acting hydraulic cylinder

How does a single-acting hydraulic cylinder handle variations in cylinder mounting and orientation?

A single-acting hydraulic cylinder is designed to handle variations in cylinder mounting and orientation effectively. Here’s a detailed explanation:

Single-acting hydraulic cylinders are widely used in various applications, including industrial machinery, construction equipment, and automotive systems. They offer flexibility in terms of mounting options and can accommodate different orientations while maintaining their functionality. Here are some key points on how single-acting hydraulic cylinders handle variations in cylinder mounting and orientation:

1. Mounting Configurations: Single-acting hydraulic cylinders can be mounted in various configurations to suit the specific requirements of the application. Common mounting options include flange mount, clevis mount, trunnion mount, and foot mount. These mounting configurations allow the cylinder to be securely attached to the machinery or equipment, providing stability and efficient force transmission. The versatility of mounting options ensures compatibility with different system designs and facilitates easy integration.

2. Angular Misalignment: Single-acting hydraulic cylinders can handle angular misalignment between the cylinder and the load or other components. This capability is particularly useful when the cylinder needs to operate in an orientation that is not perfectly aligned with the load. The cylinder’s mounting arrangement and flexible hydraulic connections allow it to accommodate small angular deviations without compromising its performance. This flexibility ensures that the cylinder can function effectively in various orientations, providing reliable force application.

3. Radial Load Capacity: Single-acting hydraulic cylinders are designed to withstand radial loads, which are forces acting perpendicular to the cylinder’s axis. Radial loads can occur due to variations in cylinder mounting or external forces applied to the cylinder. The cylinder’s construction, such as the use of sturdy piston rods and robust bearing supports, helps distribute and withstand radial loads. This capability ensures that the cylinder remains stable and can handle variations in mounting and external forces without compromising its structural integrity or performance.

4. Self-Alignment: Single-acting hydraulic cylinders possess a degree of self-alignment capability, allowing them to compensate for minor misalignments during operation. This self-alignment ability is primarily due to the presence of flexible seals and the hydraulic fluid’s compressibility. The seals can accommodate slight variations in the alignment between the cylinder and the load, ensuring smooth operation and preventing excessive wear or damage to the cylinder components. The self-alignment feature contributes to the overall reliability and longevity of the cylinder.

5. Mounting Hardware and Accessories: To further enhance the flexibility and adaptability of single-acting hydraulic cylinders, various mounting hardware and accessories are available. These include adjustable mounting brackets, spherical rod ends, and swivel joints. These components allow for fine adjustments and provide additional freedom in cylinder mounting and orientation. By using the appropriate mounting hardware and accessories, variations in cylinder mounting and orientation can be effectively managed.

It is important to consult the manufacturer’s guidelines and recommendations when installing and configuring single-acting hydraulic cylinders, especially in applications with specific mounting and orientation requirements.

In summary, single-acting hydraulic cylinders handle variations in cylinder mounting and orientation through their versatile mounting configurations, ability to accommodate angular misalignment, capacity to withstand radial loads, self-alignment capability, and availability of mounting hardware and accessories. These features ensure that the cylinders can be effectively integrated into different systems and operate reliably in various orientations.

single acting hydraulic cylinder

Can single-acting hydraulic cylinders be customized for specific machinery and equipment?

Yes, single-acting hydraulic cylinders can be customized to meet the specific requirements of various machinery and equipment. Here’s a detailed explanation:

1. Size and Dimensions: Single-acting hydraulic cylinders can be customized in terms of size and dimensions to fit specific machinery and equipment. The cylinder’s length, diameter, and stroke length can be tailored to match the available space and installation requirements of the application. Custom sizing ensures optimal integration and functionality within the given system.

2. Force Capacity: The force capacity of a single-acting hydraulic cylinder can be customized to suit the load requirements of the machinery or equipment. By adjusting the effective area of the piston, the cylinder can be designed to generate the desired force output. This customization ensures that the cylinder can effectively handle the required load without being underutilized or overstrained.

3. Mounting Options: Single-acting hydraulic cylinders offer various mounting options that can be customized to align with the mounting requirements of the machinery or equipment. Mounting styles such as flange mounts, clevis mounts, trunnion mounts, and foot mounts can be selected or designed to provide secure and reliable attachment points for the cylinder.

4. Rod End Configurations: The rod end of a single-acting hydraulic cylinder can be customized to accommodate specific connection requirements. Different rod end configurations, such as threaded ends, spherical bearings, or eye ends, can be incorporated based on the machinery or equipment’s connection points and load distribution needs.

5. Sealing and Material Selection: Single-acting hydraulic cylinders can be customized in terms of sealing systems and materials to ensure compatibility with the operating conditions and fluid used in the machinery or equipment. The sealing system, including O-rings, rod seals, and wiper seals, can be selected to withstand specific pressures, temperatures, and environments. Additionally, the cylinder’s construction materials can be chosen to provide the necessary strength, corrosion resistance, or other desired properties.

6. Integration with Hydraulic Systems: Single-acting hydraulic cylinders can be customized for seamless integration with the hydraulic systems of machinery and equipment. They can be designed to work in conjunction with specific pumps, valves, and control mechanisms to create a tailored hydraulic system that optimizes performance and functionality.

7. Special Features and Accessories: Depending on the application requirements, single-acting hydraulic cylinders can be customized with special features and accessories. These may include position sensors, stroke limiters, cushioning mechanisms, or any other components that enhance safety, precision, or specific operational needs.

In summary, single-acting hydraulic cylinders can be customized for specific machinery and equipment by adjusting size and dimensions, force capacity, mounting options, rod end configurations, sealing and material selection, integration with hydraulic systems, and incorporating special features and accessories. Customization ensures that the hydraulic cylinder is tailored to the unique requirements of the application, enabling optimal performance and functionality.

China OEM Hydraulic Cylinder Factory, Fr150 Fr210 Fr210-7 Fr220 Fr260 Fr330 Fr370 Excavator Arm Boom Bucket Hydraulic Oil Cylinder for Lo/Vol   with Good quality China OEM Hydraulic Cylinder Factory, Fr150 Fr210 Fr210-7 Fr220 Fr260 Fr330 Fr370 Excavator Arm Boom Bucket Hydraulic Oil Cylinder for Lo/Vol   with Good quality
editor by Dream 2024-05-10

China Hot selling Made in China LG6150 LG6210 LG6215 LG6225h Excavator Arm Boom Bucket Hydraulic Cylinder Manufacture for CZPT vacuum pump brakes

Product Description

PRODUCT SPECIFICATION

LKG6150  arm cylinder rod 80 LKG6150  arm cylinder tube 115
LKG6150 boom cylinder rod 70 LKG6150 boom cylinder tube 105
LKG6150  bucket cylinder rod 65 LKG6150  bucket cylinder tube 95
 LKG6210 LKG62155 arm cylinder rod 95  LKG6210 LKG6215 arm cylinder tube 140
LKG6210 LKG6215 boom cylinder rod 85 LKG6210 LKG6215 boom cylinder tube 120
LKG6210 LKG6215 bucket cylinder rod 85  LKG6210 LKG6215 bucket cylinder tube 120
LKG6225H  arm cylinder rod 100 LKG6225H  arm cylinder tube 140
LKG6225H boom cylinder rod 85 LKG6225H boom cylinder tube 120
LKG6225H  bucket cylinder rod 85 LKG6225H  bucket cylinder tube 120

Part number system

PRODUCT DISPLAY

COMPANY INFORMAION

PRODUCTION PROCESS


OTHER PRODUCTS
FAQ
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Samples:
US$ 699/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

single acting hydraulic cylinder

Can single-acting hydraulic cylinders be employed in material handling equipment?

Yes, single-acting hydraulic cylinders can be employed in material handling equipment. Here’s a detailed explanation:

Material handling equipment is widely used in various industries, including manufacturing, logistics, construction, and warehousing, to efficiently move, lift, and transport materials and goods. Single-acting hydraulic cylinders play a crucial role in the operation of many types of material handling equipment.

These cylinders are commonly found in equipment such as forklifts, pallet jacks, scissor lifts, lifting tables, and conveyor systems. They enable controlled lifting, lowering, tilting, and pushing/pulling actions, allowing for precise material handling and positioning.

Single-acting hydraulic cylinders offer several advantages in material handling applications:

1. Lifting Capacity: These cylinders can generate substantial force, enabling the equipment to lift heavy loads. The lifting capacity can be designed to meet the specific requirements of the material handling equipment.

2. Controlled and Smooth Operation: Single-acting hydraulic cylinders provide precise control over the movement of materials. The hydraulic system allows for smooth and gradual lifting, lowering, and tilting actions, ensuring safe and efficient material handling.

3. Compact Design: Single-acting hydraulic cylinders have a compact design, making them suitable for integration into various material handling equipment. The cylinders can be installed in tight spaces without compromising performance or functionality.

4. Cost-Effective: Single-acting hydraulic cylinders are generally more cost-effective compared to other types of hydraulic cylinders. Their simpler design and reduced complexity contribute to lower manufacturing and maintenance costs.

5. Durability and Reliability: Material handling equipment often operates in demanding environments, subject to heavy loads, impacts, and repetitive cycles. Single-acting hydraulic cylinders are designed to withstand these harsh conditions, offering durability and long-term reliability.

6. Safety Features: Many material handling equipment applications require safety features, such as load-holding valves and emergency lowering systems. These safety features can be integrated into the hydraulic system of single-acting cylinders to ensure safe operation and protect against accidents.

It is important to note that while single-acting hydraulic cylinders are commonly used in material handling equipment, the specific cylinder type and configuration may vary depending on the equipment’s design and requirements. Other types of hydraulic cylinders, such as double-acting cylinders or telescopic cylinders, may also be employed in certain material handling applications.

In summary, single-acting hydraulic cylinders are indeed employed in material handling equipment. Their lifting capacity, controlled operation, compact design, cost-effectiveness, durability, and safety features make them well-suited for various material handling applications across different industries.

single acting hydraulic cylinder

Can single-acting hydraulic cylinders be used in hydraulic presses?

Yes, single-acting hydraulic cylinders can be used in hydraulic presses. Here’s a detailed explanation:

Hydraulic presses are widely used in various industries for applications such as stamping, forming, punching, and molding. They utilize hydraulic cylinders to generate and control the force required for these operations. Single-acting hydraulic cylinders are well-suited for integration into hydraulic presses due to their ability to provide force in one direction. Here are some key points on using single-acting hydraulic cylinders in hydraulic presses:

1. Force Generation: Single-acting hydraulic cylinders are capable of generating substantial force when hydraulic pressure is applied to the piston for extension. This force is utilized in hydraulic presses to exert pressure on the workpiece or tooling for tasks such as bending, shearing, or compressing. The hydraulic cylinder converts the hydraulic energy into linear force, allowing the press to perform a wide range of applications.

2. Press Cycle Control: Hydraulic presses require precise control over the force and stroke during operation. Single-acting hydraulic cylinders can be actuated through control valves to control the extension and retraction of the piston. The valves enable the operator to regulate the flow of hydraulic fluid, thus controlling the force applied by the cylinder. This control allows for accurate and repeatable press cycles, ensuring consistent results and efficient production.

3. Safety Features: Hydraulic presses often incorporate safety features to protect operators and prevent damage to the press or tooling. Single-acting hydraulic cylinders can be integrated into these safety systems. For example, pressure relief valves can be installed to limit the maximum force exerted by the hydraulic cylinder, preventing overload situations. Additionally, emergency stop buttons, safety interlocks, and guarding systems work in conjunction with the hydraulic cylinder to ensure safe operation of the hydraulic press.

4. Durability and Reliability: Single-acting hydraulic cylinders are designed to withstand high pressures and heavy loads, making them suitable for the demanding conditions of hydraulic presses. They are constructed using robust materials and undergo rigorous testing to ensure durability and reliability. The cylinders can endure frequent use and provide consistent force application throughout their operational lifespan, contributing to the overall performance and productivity of the hydraulic press.

5. Customization Options: Single-acting hydraulic cylinders offer customization options to suit specific requirements in hydraulic presses. Parameters such as bore size, stroke length, and mounting configurations can be tailored to match the press’s design and application. This flexibility allows for optimal integration and performance in hydraulic press systems.

It is important to consider the force capacity, stroke length, and other technical specifications of the single-acting hydraulic cylinder to ensure compatibility with the specific hydraulic press application.

In summary, single-acting hydraulic cylinders can be effectively used in hydraulic presses for force generation, press cycle control, safety, and durability. Their ability to provide controlled linear force makes them suitable for a wide range of pressing applications across various industries.

single acting hydraulic cylinder

Can single-acting hydraulic cylinders be repaired or maintained when necessary?

Yes, single-acting hydraulic cylinders can be repaired and maintained when necessary. Here’s a detailed explanation:

1. Inspection and Assessment: When a single-acting hydraulic cylinder requires repair or maintenance, the first step is to conduct a thorough inspection and assessment. This involves examining the cylinder for any signs of wear, damage, leakage, or performance issues. The inspection helps identify the specific areas that need attention and guides the repair and maintenance process.

2. Seal Replacement: One of the common maintenance tasks for single-acting hydraulic cylinders is seal replacement. Over time, the seals can wear out or become damaged, leading to leaks and decreased performance. By replacing the seals, the cylinder can regain its proper functioning and prevent further issues.

3. Component Replacement: Depending on the extent of the damage or wear, it may be necessary to replace certain components of the single-acting hydraulic cylinder. This can include the piston, rod, cylinder barrel, or other internal parts that have experienced significant deterioration. Component replacement ensures the cylinder’s reliability and extends its service life.

4. Cleaning and Lubrication: During the repair and maintenance process, it is important to clean the single-acting hydraulic cylinder thoroughly. This involves removing any dirt, debris, or contaminants that may have accumulated. Additionally, proper lubrication of the cylinder’s moving parts is essential to reduce friction, prevent excessive wear, and promote smooth operation.

5. Testing and Adjustment: After the repair and maintenance tasks are completed, it is crucial to test the single-acting hydraulic cylinder to ensure its proper functionality. This may involve conducting pressure tests, checking for leaks, and verifying the cylinder’s movement and force output. If necessary, adjustments can be made to fine-tune the cylinder’s performance.

6. Preventive Maintenance: Implementing a preventive maintenance program is beneficial for single-acting hydraulic cylinders. Regularly scheduled maintenance activities, such as inspection, cleaning, lubrication, and minor adjustments, can help identify and address potential issues before they escalate. Preventive maintenance minimizes unexpected breakdowns, extends the cylinder’s lifespan, and ensures optimal performance.

7. Expert Assistance: In some cases, complex repairs or maintenance tasks may require the expertise of hydraulic professionals or specialized technicians. These professionals have in-depth knowledge and experience in repairing and maintaining hydraulic cylinders. Seeking expert assistance can help ensure that the repairs are performed correctly and effectively.

In summary, single-acting hydraulic cylinders can be repaired and maintained when necessary. The process typically involves inspection and assessment, seal replacement, component replacement, cleaning and lubrication, testing and adjustment, preventive maintenance, and seeking expert assistance when required. By following proper repair and maintenance procedures, the cylinder’s performance, reliability, and service life can be enhanced.

China Hot selling Made in China LG6150 LG6210 LG6215 LG6225h Excavator Arm Boom Bucket Hydraulic Cylinder Manufacture for CZPT   vacuum pump brakesChina Hot selling Made in China LG6150 LG6210 LG6215 LG6225h Excavator Arm Boom Bucket Hydraulic Cylinder Manufacture for CZPT   vacuum pump brakes
editor by Dream 2024-05-07

China supplier Cheap Arm Boom Bucket Stick Mini Excavator Hydraulic Cylinder for CZPT CZPT CZPT Cat CZPT CZPT CZPT with high quality

Product Description

cheap Arm boom bucket stick mini excavator hydraulic cylinder for CHINAMFG CHINAMFG CHINAMFG CAT CHINAMFG CHINAMFG hyundai
Part number Tube dia  mm Rod dia  mm Stroke  mm
205-63-57100 120 85 1285
206-63-57100 120 85 1285
205-63-57160 120 85 1285
205-63-57120   135 95 1490
203-63-57130 125 85 1120
203-63-57131 125 85 1120
205-63-57130 125 85 1120

Specifications
1.Supply to USA,Europe,and Australia, Russia.
2.Material:Stainless Steel
3.Professional performance excavator parts supplier
4. High quality and low price

FAQ

Q1: Are you Manufacture or Trade Company?
A1: We are manufacture,we have 20 years experience for supply Metal material and products in domestic.

Q2: How can we guarantee quality?
A2: Always a pre-production sample before mass production;Always final Inspection before shipment;

Q3: What is your terms of payment ?
A3: 1.T/T: 30% deposit in advance, the balance 70% paid before shipment
2.30% down payment, the balance 70% paid against L/C at sight
3.CHINAMFG negotiation

Q4: Can you provide Certificates for aluminum materials ?
A4:Yes,we can supply MTC-Material Test Certificate.

Q5: Can you provide sample?
A5: Yes, we can provide you sample, but you need to pay for the sample and freight firstly. We will return the sample fee after
you make an order.

 

Certification: GS, RoHS, CE, ISO9001
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Piston Cylinder
Adjusted Form: Switching Type
Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders compare to other methods of force generation like electric motors?

Hydraulic cylinders and electric motors are two different methods of force generation with distinct characteristics and applications. While both hydraulic cylinders and electric motors can generate force, they differ in terms of their working principles, performance attributes, and suitability for specific applications. Here’s a detailed comparison of hydraulic cylinders and electric motors:

1. Working Principle:

– Hydraulic Cylinders: Hydraulic cylinders generate force through the conversion of fluid pressure into linear motion. They consist of a cylinder barrel, piston, piston rod, and hydraulic fluid. When pressurized hydraulic fluid enters the cylinder, it pushes against the piston, causing the piston rod to extend or retract, thereby generating linear force.

– Electric Motors: Electric motors generate force through the conversion of electrical energy into rotational motion. They consist of a stator, rotor, and electromagnetic field. When an electrical current is applied to the motor’s windings, it creates a magnetic field that interacts with the rotor, causing it to rotate and generate torque.

2. Force and Power:

– Hydraulic Cylinders: Hydraulic cylinders are known for their high force capabilities. They can generate substantial linear forces, making them suitable for heavy-duty applications that require lifting, pushing, or pulling large loads. Hydraulic systems can provide high force output even at low speeds, allowing for precise control over force application. However, hydraulic systems typically operate at lower speeds compared to electric motors.

– Electric Motors: Electric motors excel in providing high rotational speeds and are commonly used for applications that require rapid motion. While electric motors can generate significant torque, they tend to have lower force output compared to hydraulic cylinders. Electric motors are suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.

3. Control and Precision:

– Hydraulic Cylinders: Hydraulic systems offer excellent control over force, speed, and positioning. By regulating the flow of hydraulic fluid, the force and speed of hydraulic cylinders can be precisely controlled. Hydraulic systems can provide gradual acceleration and deceleration, allowing for smooth and precise movements. This level of control makes hydraulic cylinders well-suited for applications that require precise positioning, such as in industrial automation or construction equipment.

– Electric Motors: Electric motors also offer precise control over speed and positioning. Through motor control techniques such as varying voltage, frequency, or pulse width modulation (PWM), the rotational speed and position of electric motors can be accurately controlled. Electric motors are commonly used in applications that require precise speed control, such as robotics, CNC machines, or servo systems.

4. Efficiency and Energy Consumption:

– Hydraulic Cylinders: Hydraulic systems can be highly efficient, especially when properly sized and designed. However, hydraulic systems typically have higher energy losses due to factors such as fluid leakage, friction, and heat generation. The overall efficiency of a hydraulic system depends on the design, component selection, and maintenance practices. Hydraulic systems require a hydraulic power unit to pressurize the hydraulic fluid, which consumes additional energy.

– Electric Motors: Electric motors can have high efficiency, especially when operated at their optimal operating conditions. Electric motors have lower energy losses compared to hydraulic systems, primarily due to the absence of fluid leakage and lower friction losses. The overall efficiency of an electric motor depends on factors such as motor design, load conditions, and control techniques. Electric motors require an electrical power source, and their energy consumption depends on the motor’s power rating and the duration of operation.

5. Environmental Considerations:

– Hydraulic Cylinders: Hydraulic systems typically use hydraulic fluids that can pose environmental concerns if they leak or are not properly disposed of. The choice of hydraulic fluid can impact factors such as biodegradability, toxicity, and potential environmental hazards. Proper maintenance and leak prevention practices are essential to minimize the environmental impact of hydraulic systems.

– Electric Motors: Electric motors are generally considered more environmentally friendly since they do not require hydraulic fluids. However, the environmental impact of electric motors depends on the source of electricity used to power them. When powered by renewable energy sources, such as solar or wind, electric motors can offer a greener solution compared to hydraulic systems.

6. Application Suitability:

– Hydraulic Cylinders: Hydraulic cylinders are commonly used in applications that require high force output, precise control, and durability. They are widely employed in industries such as construction, manufacturing, mining, and aerospace. Hydraulic systems are well-suited for heavy-duty applications, such as lifting heavy objects, operating heavy machinery, or controlling large-scale movements.

– Electric Motors: Electric motors are widely used in various industries and applications that require rotational motion, speed control, and precise positioning. They are commonly found in appliances, transportation, robotics, HVAC systems, and automation. Electric motorsare suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.In summary, hydraulic cylinders and electric motors have different working principles, force capabilities, control characteristics, efficiency levels, and application suitability. Hydraulic cylinders excel in providing high force output, precise control, and durability, making them ideal for heavy-duty applications. Electric motors, on the other hand, offer high rotational speeds, precise speed control, and are commonly used for applications that involve continuous rotary motion. The choice between hydraulic cylinders and electric motors depends on the specific requirements of the application, including the type of motion, force output, control precision, and environmental considerations.

hydraulic cylinder

Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders

Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:

  1. Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
  2. Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
  3. Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
  4. Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
  5. Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.

In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.

hydraulic cylinder

What are the common signs of wear or leakage that indicate hydraulic cylinder issues?

Hydraulic cylinders are critical components in hydraulic systems, and wear or leakage can lead to performance issues and potential system failures. It is important to be aware of the common signs that indicate hydraulic cylinder problems. Here’s a detailed explanation of the common signs of wear or leakage that indicate hydraulic cylinder issues:

1. Fluid Leakage:

– Fluid leakage is one of the most obvious signs of hydraulic cylinder problems. If you notice hydraulic fluid leaking from the cylinder, it indicates a seal failure or damage to the cylinder. Leaking fluid may be visible around the rod, piston, or cylinder body. It is important to address fluid leakage promptly as it can lead to a loss of system efficiency, contamination of the surrounding environment, and potential damage to other system components.

2. Reduced Performance:

– Wear or internal damage to the hydraulic cylinder can result in reduced performance. You may notice a decrease in the cylinder’s force output, slower operation, or difficulty in extending or retracting the cylinder. Reduced performance can be indicative of worn seals, damaged piston or rod, internal leakage, or contamination within the cylinder. Any noticeable decrease in the cylinder’s performance should be inspected and addressed to prevent further damage or system inefficiencies.

3. Abnormal Noise or Vibrations:

– Unusual noise or vibrations during the operation of a hydraulic cylinder can indicate internal wear or damage. Excessive noise, knocking sounds, or vibrations that are not typical for the system may suggest problems such as worn bearings, misalignment, or loose internal components. These signs should be investigated to identify the source of the issue and take appropriate corrective measures.

4. Excessive Heat:

– Overheating of the hydraulic cylinder is another sign of potential issues. If the cylinder feels excessively hot to the touch during normal operation, it may indicate problems such as internal leakage, fluid contamination, or inadequate lubrication. Excessive heat can lead to accelerated wear, reduced efficiency, and overall system malfunctions. Monitoring the temperature of the hydraulic cylinder is important to detect and address potential problems.

5. External Damage:

– Physical damage to the hydraulic cylinder, such as dents, scratches, or bent rods, can contribute to wear and leakage issues. External damage can compromise the integrity of the cylinder, leading to fluid leakage, misalignment, or inefficient operation. Regular inspection of the cylinder’s external condition is essential to identify any visible signs of damage and take appropriate actions.

6. Seal Failure:

– Hydraulic cylinder seals are critical components that prevent fluid leakage and maintain system integrity. Signs of seal failure include fluid leakage, reduced performance, and increased friction during cylinder operation. Damaged or worn seals should be replaced promptly to prevent further deterioration of the cylinder’s performance and potential damage to other system components.

7. Contamination:

– Contamination within the hydraulic cylinder can cause wear, damage to seals, and overall system inefficiencies. Signs of contamination include the presence of foreign particles, debris, or sludge in the hydraulic fluid or visible damage to seals and other internal components. Regular fluid analysis and maintenance practices should be implemented to prevent contamination and address any signs of contamination promptly.

8. Irregular Seal Wear:

– Hydraulic cylinder seals can wear over time due to friction, pressure, and operating conditions. Irregular seal wear patterns, such as uneven wear or excessive wear in specific areas, may indicate misalignment or improper installation. Monitoring the condition of the seals during regular maintenance can help identify potential issues and prevent premature seal failure.

It is important to address these common signs of wear or leakage promptly to prevent further damage, ensure the optimal performance of hydraulic cylinders, and maintain the overall efficiency and reliability of the hydraulic system. Regular inspection, maintenance, and timely repairs or replacements of damaged components are key to mitigating hydraulic cylinder issues and maximizing system longevity.
China supplier Cheap Arm Boom Bucket Stick Mini Excavator Hydraulic Cylinder for CZPT CZPT CZPT Cat CZPT CZPT CZPT   with high quality China supplier Cheap Arm Boom Bucket Stick Mini Excavator Hydraulic Cylinder for CZPT CZPT CZPT Cat CZPT CZPT CZPT   with high quality
editor by CX 2023-11-21